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Evaluation of Turf-Grass and Prairie-Vegetated
Rain Gardens in a Clay and Sand Soil,
Madison, Wisconsin, Water Years 200408

By William R. Selbig, U.S. Geological Survey, and Nicholas Balster, University of Wisconsin

Abstract

The U.S. Geological Survey, in cooperation with a
consortium of 19 cities, towns, and villages in Dane County,
Wis., undertook a study to compare the capability of rain
gardens with different vegetative species and soil types to
infiltrate stormwater runoff from the roof of an adjacent
structure. Two rain gardens, one planted with turf grass and
the other with native prairie species, were constructed side-
by-side in 2003 at two locations with different dominant soil
types, either sand or clay. Each rain garden was sized to a ratio
of approximately 5:1 contributing area to receiving area and to
a depth of 0.5 foot.

Each rain garden, regardless of vegetation or soil type,
was capable of storing and infiltrating most of the runoff
over the 5-year study period. Both rain gardens in sand, as
well as the prairie rain garden in clay, retained and infiltrated
100 percent of all precipitation and snowmelt events during
water years 2004—07. The turf rain garden in clay occasionally
had runoff exceed its confining boundaries, but was still
able to retain 96 percent of all precipitation and snowmelt
events during the same time period. Precipitation intensity
and number of antecedent dry days were important variables
that influenced when the storage capacity of underlying soils
would become saturated, which resulted in pooled water in the
rain gardens.

Because the rooftop area that drained runoff to each rain
garden was approximately five times larger than the area of the
rain garden itself, evapotranspiration was a small percentage
of the annual water budget. For example, during water year
2005, the maximum evapotranspiration of total influent
volume ranged from 21 percent for the turf rain garden in clay
to 25 percent for the turf rain garden in sand, and the minimum
ranged from 12 percent for the prairie rain garden in clay to 19
percent for the prairie rain garden in sand. Little to no runoff
left each rain garden as effluent and a small percentage of
runoff returned to the atmosphere through evapotranspiration;
therefore, the remainder was considered recharge. During
water year 2005, recharge was 81 to 75 percent of total
influent volume for the prairie- and turf-rain gardens in sand
and 87 to 78 percent for the prairie- and turf-rain gardens in
clay, respectively. Maximum recharge volumes ranged from
90 to 94 percent of the total influent volume in the turf and

prairie rain gardens in sand and occurred during water year
2004. Maximum recharge in the turf and prairie rain gardens
in clay ranged from 89 percent during water year 2007 to 98
percent during water year 2004.

Median infiltration rates were an order of magnitude
greater for rain gardens planted in sand than for those in clay,
regardless of vegetation type. Under similar soil conditions,
rain gardens planted with turf grass had lower median
infiltration rates than those planted with prairie species.
Median infiltration rates were 0.28 and 0.88 inches per hour
in the turf and prairie rain gardens in clay, respectively, and
2.5 and 4.2 inches per hour in the turf and prairie rain gardens
in sand, respectively. In general, infiltration rates were greater
during spring (April and May) and summer (June through
August) months.

Of the six observed exceedences of the storage capacity
of the turf rain garden in clay between April-November during
200407, five were predicted by use of a combination of the
normalized surface storage volume, the median infiltration
rate, and an estimate of specific yield for soils under the rain
garden to a depth equal to the uppermost limiting layer. By use
of the same criteria, in water year 2008, when the contributing
drainage area to the prairie rain garden in clay was doubled,
all four observed exceedences of the total storage capacity
were predicted. The accuracy of the predictions of when the
total storage capacity of the rain gardens would be exceeded
indicates that by applying measurements of the appropriate
soil properties to rain garden design, environmental
managers and engineers may improve the tailoring of design
specifications of rain gardens for new or retrofitted areas.

An examination of soil structure and the root systems
in the rain gardens in clay revealed striking differences
between turf and prairie vegetation. Soils under the prairie rain
garden, although they possessed the remnants of a limiting
clay layer, appeared well-drained, whereas those under the
turf rain garden showed marked evidence of a perched water
table. Although roots were present in all horizons sampled
within clay soil in the prairie rain garden, roots were limited
to the upper A and Bt horizons within the turf rain garden.
Collectively, these differences point to greater pedoturbation
and soil development in the prairie rain garden in clay relative
to the rain garden planted with turf grass.
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Introduction

The adverse impacts of urbanization on stormwater-
runoff quantity and quality have been well documented (U.S.
Environmental Protection Agency, 1983, Bannerman and
others, 1993). When impervious area increases, precipitation
that previously would have infiltrated into surrounding soils
is instead collected and conveyed by hard surfaces into
nearby receiving water bodies. Collectively, impervious
areas introduced by traditional urban landscapes lead to more
diverse pollutants in overland flow, reduced pollutant removal
during overland flow, and reduced infiltration (Davis, 2005).
By reducing the volume of runoff that would percolate into
underlying soils under natural conditions, urban development
can reduce the supply of groundwater that is beneficial for
wetlands, streams, and lakes and vital for human consumption
(Simmons and Reynolds, 1982). Traditional stormwater
management has focused primarily on the use of detention
ponds for reducing flood peaks and preventing localized
flooding. Although these practices have been successful
in reducing episodic localized flooding and improving the
quality of runoff, they have not addressed groundwater
recharge issues or other aspects of altered streamflow that
negatively impact stream ecosystems and human uses (House
and others, 1993; Pettersson, 1998; Winer, 2000; Marlin and
others, 2002).

As development continues to push further into our
Nation’s landscape, controlling nonpoint sources of
contamination, replenishing groundwater supplies, and
protecting natural waterways have become important tasks
for the regulatory community. Environmental managers
are charged with developing new strategies that promote
a balance between existing and expanding urban areas
and the environmental challenges they impose. To this
end, the Wisconsin Department of Natural Resources
(WDNR) promulgated a series of performance standards
and prohibitions with regard to nonpoint stormwater sources
(Wisconsin Administrative Code, 2002). These standards
are intended to be minimum benchmarks of performance
necessary to achieve water-quantity and quality goals.
Specifically, the standards require that new residential
areas infiltrate 90 percent of predevelopment infiltration
volume for an average rainfall year and that commercial
and other nonresidential land uses infiltrate 60 percent of
predevelopment infiltration volume (Wisconsin Administrative
Code, 2002).

Recent trends in urban-runoff mitigation have prompted
technologies that focus on infiltration. One such technology,
known as a rain garden, is a shallow depression that gathers
runoff generated from nearby impervious surfaces and
infiltrates that runoff into the ground. In addition to reducing
or limiting the quantity of stormwater runoff, rain gardens
provide some level of water-quality benefit by settling,
filtration, adsorption, decomposition, ion exchange, and
volatilization (Prince George’s County, 1993). Rain gardens
are commonly used to retrofit existing urban areas, where

land requirements often preclude larger structures. Although
the use of rain gardens is increasing, there appears to be no
clear consensus on how soils at a site might limit the use of
an infiltration device. In the State of Wisconsin, an exemption
is granted to sites that fall under the purview of infiltration
technical standards if the infiltration rate of the soil is less
than 0.6 in/hr (Wisconsin Administrative Code, 2002). This
exemption limits the use of infiltration in many areas in
Wisconsin. When expansion of the use of rain gardens and
other infiltration devices is considered, additional information
about soil amendments and sizing criteria is likely to reduce
the uncertainty associated with requiring infiltration in soils
with low infiltration rates.

Previous studies have evaluated the infiltrative and
water-quality benefits of rain gardens sited in various soil
types. Results of these studies suggest rain gardens can be an
effective way to infiltrate stormwater runoff from localized
sources (Dietz and Clausen, 2005; Dietz and Clausen, 2006;
Smith and Hunt, 2007). However, most of these studies
may not have represented true field conditions, because
underground impermeable membranes were often installed to
seal the rain garden. This was done to capture all percolated
water, thus ensuring accurate volumetric mass-balance
calculations; it also disturbed the native soil structure in the
process. Furthermore, many rain garden manuals recommend
planting vegetation that is native to the area and do not
consider a more commonly accepted ground cover such as turf
grass (Prince George’s County, 1993; Wisconsin Department
of Natural Resources, 2003; City of Lenexa, 2003). Native
prairie vegetation has been associated with a dense root
structure capable of growing to substantial depths below the
ground surface. This type of vegetation is assumed to promote
runoff interception and infiltration; however, few studies
have verified this claim and none have examined the rooting
character of these vegetation types within urban rain gardens.
This lack of information about below-ground processes has
arguably limited ability to predict the contribution of rain
gardens to stormwater management (Eissenstat and others,
2006). Other studies have shown that turf grasses can also
limit overland runoff (Kussow, 1995). Steinke and others
(2007) measured significantly lower runoff volumes from an
experimental buffer strip planted with turf grass than those
of an adjacent plot planted with emergent prairie vegetation;
turf grass may be more suitable for homeowners to use due
to cost and maintenance concerns. However, little is known
about the interactions between the soil and the variety of plant
species used in rain garden design. This absence of data is
understandable given the difficulty of assessing root dynamics
and morphology on site without destructive sampling.
However, it limits understanding of plant-soil dynamics in rain
gardens, including the cycling of carbon and minerals, root-
water relationships, and the thus long-term functionality of
these bioengineered systems (Asseng and others, 1997).

For these reasons, the U.S Geological Survey, in
cooperation with a consortium of 19 cities, towns, and villages
in Dane County, Wis., undertook a study to evaluate the



effectiveness of rain gardens with different soil types and
vegetative species for infiltrating stormwater runoff. Two rain
gardens, one planted with turf grass and the other with native
prairie species, were constructed side-by-side in one location
where sand was the dominant soil type and another location
where clay was the dominant soil type. Instruments were
installed to measure the volumetric mass balance of each rain
garden from late 2003 through 2008. This study supports an
ongoing effort to identify existing and new methods to reduce
the loss of recharge to groundwater from urban areas.

Purpose and Scope

This report documents the methods used in and the
results from a study to determine if soil type or vegetative
species, or both, in a rain garden have an effect on the rate
of infiltration of stormwater runoff. Two rain gardens with
different vegetative species and soil types were evaluated, and
their soil and vegetative characteristics were documented. The
controlled construction of the rain gardens and installation
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Introduction

of instrumentation were important for accurate measurement
of hydrologic, soil, and vegetative characteristics, and these
methods are described. The capability of a water balance

for estimating recharge at each rain garden is evaluated, and
the storage and infiltration characteristics for different soils
and vegetation types are compared. Finally, the results of an
assessment of root-mass development in a limiting clay layer
are presented.

Description of Study Area

Madison, Wis., has a population of 208,054 (based on
the 2000 census). The climate is typical of interior North
America, with a large annual temperature range and frequent
short-period temperature changes. Nearly 60 percent of the
annual precipitation falls in May through September, and
annual precipitation averages 31.7 in. (National Oceanic and
Atmospheric Administration, 2005). Both rain garden study
areas were located approximately 2 mi apart near the western
boundaries of the city (fig. 1).
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Methods

Rain Garden Location and Construction

Two geographic areas were selected in Madison, Wis.,
to represent different soil conditions. The first location had
predominantly sandy soils and the second contained more
clay and silt. Two rain gardens were constructed side-by-
side at each location in June 2003. Each rain garden received
approximately equal amounts of runoff from the roof of a
nearby structure. In each location, one rain garden was planted
with turf grass and the adjacent rain garden was planted with
native prairie vegetation. Although soils at each rain garden
location are variable in texture, each was primarily dominated
by soils that could be generalized as sand or clay and was
therefore assigned a single soil type to simplify discussion.
To clarify reference to vegetation, each rain garden will
be referred to by vegetative species followed by the soil
type in which it was located. The resulting rain gardens are
subsequently called turf-sand, prairie-sand, turf-clay, and
prairie-clay.

The city of Madison constructed the rain gardens by
use of equipment typically available to homeowners and
landscaping crews. Skid loaders were used to excavate all
parent material and assisted in forming earthen berms around
the rain garden boundaries to assure that no runoff from areas
other than the roof entered the rain garden. Approximately 4
to 6 in. of screened compost from the Dane County compost
facility was mixed by use of a rototiller into parent material
at the bottom of each rain garden. A uniform, level surface
was approximated by use of survey equipment. Turf rain
gardens were seeded with a grass mix of red fescue, Kentucky
bluegrass, and perennial rye grass, then fertilized and matted.
The prairie rain gardens were planted with dormant plugs
spaced approximately 1 ft apart, then fertilized (fig. 2). Table 1
details the diversity of species planted in each prairie rain
garden.

Construction of each rain garden was completed in June
2003; however, an extended drought during the summer of
2003 inhibited root growth in the turf rain gardens, but by
the following spring (2004), the grass was well established in
both turf gardens. The prairie rain gardens did not experience
the same retardation of vegetative growth and appeared well
established by fall 2003. This may be a result of the use of
dormant plantings rather than seed.

Rain gardens in sand were built next to a municipal
maintenance garage located in the Owen Conservation Park,
a hummocky area on the west side of Madison (fig. 1). Soils
in this area consist of silt loam, sandy clay loam, and sandy
loam (Natural Resources Conservation Service, 2009). The
parent material of soils in this area consists of till typical of
unconsolidated glacial deposits in drumlins created during
the Wisconsin glaciation (Mickelson, 2007). Each rain garden
received runoff from the roof of the maintenance garage. The
total area of the roof was 1,026 ft% and it was covered with

Table 1. List of vegetative species planted in the prairie-sand
and prairie-clay rain gardens, Madison, Wis.

Botanical name

Common name

Physostegia virginiana
Rudbeckia subtomentosa
Iris pseudacorus

Chelone glabra

Lobelia cardinalis
Scirpus atrovirens
Scirpus validus

Carex typhina
Pycnanthemum virginianum
Silene stellata

Aquilegia canadensis
Baptisia bracteata

Aster laevis

Monarda

Schizachyrium scoparium
Bouteloua curtipendula
Asclepias incarnata

Sagittaria latifolia

Obedient plant

Sweet black-eyed susan
Yellow flag iris

White turtlehead
Cardinal flower

Dark green bulrush
Great bulrush
Common cattail sedge
Mountain mint

Starry campion

Wild columbine
Cream wild indigo
Smooth aster

Wild bergamot

Little bluestem
Sideoats grama grass
Swamp milkweed

Narrowleaf arrowhead

asphalt composite shingles commonly found on residential
dwellings. One-half of the total roof area (513 ft?) was directed
into one of two downspouts draining into the turf grass or
prairie rain gardens. Each rain garden was approximately

100 ft2, or one-fifth the size of the roof area draining to it.
Water was allowed to pond up to a depth of approximately

6 in. before leaving the rain garden as discharge.

Rain gardens in clay were built next to a municipal water-
supply pump house approximately 2 mi west of the sand rain
gardens (fig. 1). Similar to the sand rain garden location, soils
in this area range from a sandy loam to a clay loam (Natural
Resources Conservation Service, 2009). The parent material
of soils in this area consists of a sandy matrix of glacial
outwash and till typical of unconsolidated glacial deposits of
the Milton end moraine during the last part of the Wisconsin
glaciation (Mickelson, 2007). However, excavations from
urban development over the last decade disturbed the native
landscape, resulting in post-construction soils that were
heavily compacted prior to rain garden construction. Each
rain garden received runoff from the roof of the municipal
well house. The total area of the flat, rubber roof was 3,080 ft2
and was designed to drain equally (1,540 ft2) into one of two
downspouts. Similar to the rain gardens in sand, the area of
turf- and prairie-clay rain gardens was approximately one-fifth
and one-fourth the size of the roof area draining to it (354
and 403 ft2), respectively. Water was allowed to pond up to a
depth of approximately 6 in. before leaving the rain garden as

discharge.
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Figure 2. Individual plugs of various prairie species planted in the prairie
rain gardens in the A, clay site, and B, sand site.
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Hydrologic Measurements

Stormwater runoff was measured from downspouts
leading to each rain garden (figs. 3 and 4). The locations
of the monitoring stations are shown in figure 1. Each
monitoring station was equipped to measure water level,
precipitation, subsurface soil-moisture content, and reference
evapotranspiration. Data were measured, controlled, and
stored by electronic dataloggers. Telephone modems allowed
for automatic retrieval of data twice daily. Storm-event
characteristics for runoff events at each rain garden location
are detailed in appendix tables 1-1 and 1-2.

Precipitation

Continuous precipitation data were collected at each
rain garden location by use of tipping-bucket rain gages
calibrated to 0.01 in. (fig. 5). Although these rain gages were
not designed to measure snowfall, precipitation during several
runoff events during winter months (December-March) was
in the form of rain instead of snow. Monthly precipitation
totals during winter months were estimated from the National
Oceanic and Atmospheric Administration (NOAA) weather
station at the Dane County Regional Airport in Madison, Wis.

(National Oceanic and Atmospheric Administration, 2003—07).

Summaries of precipitation data from the clay and sand
rain gardens are presented in appendix tables 1-1 and 1-2,
respectively.

Evapotranspiration

Estimates of evapotranspiration were computed to
characterize the volume of water lost to the atmosphere.
To calculate reference evapotranspiration (ET,), solar
radiation, air temperature, relative humidity, and wind
speed were collected by use of a pyranometer, platinum
resistance temperature detector, capacitive relative humidity
sensor, and anemometer, respectively (fig. 5). Reference
evapotranspiration, in millimeters, was computed every
5 min by use of the Penman-Monteith equation (Monteith
and Unsworth, 1990; Allen and others, 1998) and was then
summed into hourly and daily totals. A reference surface
closely resembles a green, well-watered grass of uniform
height, actively growing and completely shading the ground
(Allen and others, 1998). Both rain gardens planted with
turf grass closely resemble a reference surface. A landscape
coefficient of 0.95, based on published values for cool
season grasses (Allen and others, 1998), was applied to the
reference evapotranspiration in the turf rain gardens.Many
of the vegetative properties, such as ground cover, canopy,
and aerodynamic resistance in the rain garden planted with
prairie vegetation were likely different from those in the turf

rain gardens. Estimates of evapotranspiration in the prairie
rain gardens were based on a range of published landscape
coefficients for a variety of vegetative species commonly
used in the landscaping industry. The landscape coefficient
uses species type, density, and microclimate to estimate a
correction factor to reference evapotranspiration (Costello and
others, 2000). Average landscape coefficients representing
“low” and “high” evapotranspiration were calculated for
many of the species in the prairie rain gardens. A landscape
coefficient (K ) for a specific vegetative species was
determined using the following formula:

KL:KSXKdXKnc (1)
where
K, is the species factor;
Ky is the density factor; and
K. is the microclimate factor.

K, is then multiplied by the reference
evapotranspiration to determine the final
evapotranspiration for a specific vegetative
species. A weighted average was used to
enhance the accuracy of the representation
of the abundance of each species identified
in each rain garden.

Water Influent and Effluent

Influent

Stormwater runoff influent at the turf- and prairie-clay
rain gardens was measured by means of a prerated H-flume
and shaft encoder (fig. 3). Rooftop runoff first traveled through
the downspout dedicated to each rain garden into a buffer tank
that prevented turbulent flow conditions. Water levels in the
buffer tank would raise or lower a float and counterweight
system connected to a shaft encoder, which was calibrated to
the nearest 0.01 ft. The shaft encoder’s point of zero flow was
coincident with the invert of an H-flume of 0.8 ft in height.
Water levels in the buffer tank were used to compute an
instantaneous discharge by use of the known H-flume rating.
Storm-runoff volumes were computed by summing the 1-min-
interval instantaneous discharge over the runoff duration.

Stormwater runoff influent at the turf- and prairie-sand
rain gardens was measured by means of a tipping bucket and
magnetic reed switch (fig. 4). Rooftop runoff first traveled
through the downspout dedicated to each rain garden into a
buffer tank. A small funnel was attached to the buffer tank
to focus water into the tipping bucket Each tip of the bucket
represented a known volume of water. After passing through
the tipping bucket, runoff would flow into a drain tube leading
into the rain garden.
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Figure 5. Weather station instrumentation used for precipitation and to estimate
reference evapotranspiration.

Effluent

Water level in excess of 6 in. in each rain garden was discharged as effluent.
A 0.6-ft prerated H-flume was used to control the rate of flow (figs. 3 and 4). Water
levels in each rain garden were measured by means of a submersible pressure
transducer, calibrated to 0.01 ft, placed inside a stilling well made of a small-
diameter polyvinyl chloride (“PVC”) tube (figs. 3 and 4). Water level was measured
in 0.01-ft increments above the rain garden floor. Because the invert of the 0.6-ft
H-flume was at a known elevation above the rain garden floor, water levels above
the flume invert were converted to an instantaneous discharge by use of the known
H-flume rating. Storm-runoff volumes were computed by summing the 1-min-
interval instantaneous discharge over the runoff duration.

Data Analysis

Classification and regression
trees (CART) were used to visualize a
relation between a dependent variable
and a set of independent variables
(Breiman and others, 1984). A CART
analysis was done on each rain garden
to understand which climatologic and
hydrologic variables might determine
when the rain garden would pool with
water. The dependent variable was
qualitatively termed “wet” or “dry” to
describe whether or not a rain garden
pooled with water during a discharge
event. Quantitative independent
variables including precipitation depth,
total event volume, antecedent dry days,
and 15-, 30-, and 60-min precipitation
intensities were used to describe the
hydrologic and climatologic conditions.

During “wet” periods, an estimate
of the rate of infiltration was computed
by use of a simplified falling head
technique. Consistent with Darcy’s
Law, infiltration rates varied with depth
(or head) of water in the rain gardens.
To determine if infiltration rates were
changing over the duration of the
study period, a fixed water depth was
used in the computational process.
This also provided a consistent basis
for evaluating each rain garden. After
cessation of rainfall, infiltration rates
were estimated based on the rate of
falling head in the rain garden from a
depth of approximately 0.1 ft to when
the rain garden was no longer covered
by water. Figure 6 shows an example
of the estimation of infiltration rates in
the sand rain gardens. In some cases,
an estimate of infiltration rate was not
possible because of additional influent
prior to or during recession of pooled
water in the rain garden. Estimates
of infiltration rates were compared
between soil types and vegetative
species to show seasonal and temporal
changes. Seasonal differences were
determined by use of the nonparametric
Mann-Whitney statistical test for two
groups (Helsel and Hirsch, 1992).
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Figure 6. Example calculation of average infiltration rate using simplified falling-head technique in the

sand rain gardens.

Limited sample populations precluded an evaluation of winter
and fall infiltration rates in the prairie- and turf-sand and
prairie-clay rain gardens. Therefore, use of the Mann-Whitney
test was limited to a comparison of spring and summer
infiltration rates. The infiltration rates for all four seasons

in the turf-clay rain garden were compared by use of the
nonparametric Kruskall-Wallis and Dunn’s statistical tests for
multiple groups (Dunn, 1964; Helsel and Hirsch, 1992).

Characterization of Soils and Vegetation

Texture and Other Soil Properties

Selection of each study location was based upon the
presence of either sand or clay as the dominant soil texture.
Prior to rain garden construction, a hand-powered soil auger
was used to identify soil texture to a depth of approximately
1 ft at each study location. In addition, regional soils maps
were reviewed to verify soil classification at depth (Natural
Resources Conservation Service, 2009). Infiltration rates
were then determined at each location by use of a double-
ring infiltrometer. Finally, the resulting infiltration rates were
then compared to published values typical for sand and clay
soils (Rawls and others, 1998). In 2003, after construction of

each rain garden was complete, a core was extracted from the
prairie-clay and turf- and prairie-sand rain gardens to a depth
of approximately 20 ft by use of a Geoprobe to help provide
a depth profile of texture changes. Additional soil cores

were taken in 2008 at multiple locations in both the turf- and
prairie-clay rain gardens to a depth of approximately 10 ft

to further characterize the substrate by minimizing the large
amount of spatial variability in soil texture. All cores were
taken during winter months when soils were frozen and less
prone to compaction from heavy equipment.

Soil Moisture

Within each rain garden, volumetric soil-moisture
profiles were measured by use of vertically oriented soil-
moisture sensors (fig. 7). Soil moisture was measured at
20-cm increments to a depth of 4 ft below the rain garden. One
sensor and its protective access tube were installed in each
rain garden following methods described by the manufacturer
(Sentek Party, Ltd., 1999). Proper installation of soil-moisture
sensors and access tubes results in no air pockets along the
length of the access tube and causes minimal disturbance of
the adjacent soil profile (Graczyk and Greb, 2006).
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Figure 7.

Soil moisture was measured at 15 cm, 35 cm, 55 cm, 75 cm,
95 cm, and 115 cm below the land surface in the turf-clay,
prairie-clay, and prairie-sand rain gardens. Soil moisture in
the turf-sand rain garden was measured at 5 cm, 15 cm, 25
cm, 35 cm, and 45 cm below the land surface. Measurements
of soil moisture were collected at 15-min increments from
October 2003 to January 2006 and 5-min increments from
February 2006 to September 2008.

Each soil-moisture sensor was periodically calibrated by
use of methods described by the manufacturer (Sentek Party,
Ltd., 1999). Calibration was limited to 100 percent (water)
and 0 percent (air) saturation. Each sensor can be calibrated
to measure the absolute volumetric moisture content of a
specific soil type if the physical properties of that soil are
known across a range of moisture conditions. However, given
the destructive nature of the calibration process to determine
absolute soil moisture values, a generalized algorithm
developed by the manufacturer to represent sands, loams, and
clay loams, was used in this study. Therefore, on-site soil-
moisture conditions were considered a relative, rather than
absolute, value.

Soil-moisture sensors spaced at 20-centimeter intervals on soil probe. The soil probe is inserted vertically
into the access tube.

Root Morphology

In October 2008, a 4.25-ft-wide by 10-ft-long observation
trench was excavated through the approximate center of the
prairie- and turf-clay rain gardens. The trench in the prairie-
clay rain garden was dug to a depth of 5 ft, while the turf-clay
trench was excavated to only 4 ft because of standing water
at depth; no standing water was observed in the prairie-clay
trench. These trenches provided profile walls that were used to
describe the physical characteristics of each soil and quantify
rooting dynamics within each rain garden. The south wall of
each trench was prepared by hand for soil-profile descriptions,
subsampling, and additional on-site root measurements; care
was taken to avoid smearing of soil surfaces.

Soils were described according to standard protocol
for field observation (Schoeneberger and others, 2002).
Measurements included master and subordinate horizons,
any changes in parent material, texture class, rooting depth,
color, structure, and presence of mottling. After the soil profile
descriptions were done, six discrete soil cores were extracted
horizontally from the approximate midpoint of each horizon



along the length of the trench by use of a 5.6-in3 cylinder
driven into random locations along the trench wall, within
each horizon, with a hammer-core sampler (Blake and Hartge,
2002). These samples were bagged and transported to the
University of Wisconsin soils laboratory for measurements of
bulk density and root morphology. An additional sample was
taken with a hand trowel from each horizon for determination
of soil texture.

Two of the six soil cores per horizon were used to
quantify bulk density and soil organic matter (SOM). In the
laboratory, the soil cores were dried at 105°C for 24 hours and
then weighed. Bulk density was then calculated to the nearest
0.01 g. Soil textures were determined by use of a hydrometer
on samples pretreated with Calgon© solution (Gee and Or,
2002). This analysis was performed at 30°C on samples from
each horizon with the exception of horizons O and A, due to
the variable proportions of organics in those samples. Soil
organic-matter contents were determined by loss on ignition,
by use of 10 g of oven-dried soil heated at 550°C for 3 hr in an
Isotemp muffle furnace (Heiri and others, 2001).

Root dynamics were quantified in the lab from the
remaining four core samples per horizon. Calculations of root
length density (RLD), specific root length (SRL), root dry
mass, and total length were done for each horizon. Each core
was first soaked in distilled water for 48 hr, at which time the
cores began to naturally disperse. The cores were then lightly
agitated by hand to liberate the roots from the soil. All visible
roots were extracted from the soil slurry on a 0.05-mm soil
sieve and cleaned with distilled water. The soil slurry was run
through the sieving process a second time to ensure all roots
were extracted from the core samples, and the roots were then
patted dry on a paper towel. Next, the length of each root was
measured. Last, the roots were dried at 70°C for 48 hr in a
convection oven before determination of dry weight.

Comparison of Rain Gardens

Hydrologic, soil, and vegetation characteristics were
compared for the turf-clay, prairie-clay, turf-sand, and
prairie-sand rain gardens from December 2003 to September
2008. During the 5-year monitoring period, the sand and
clay gardens received runoff from more than 380 and 275
precipitation and snowmelt events, respectively (appendix
tables 1-1 and 1-2). Measurements of runoff volume
(both influent and effluent), precipitation, and reference
evapotranspiration were used to determine the water balance
for each rain garden, which, in turn, was used to estimate
recharge. Water depth in each rain garden was measured
to estimate infiltration rates, which were then compared to
determine differences between vegetative species and soil type
as well as seasonal and temporal trends.

Comparison of Rain Gardens 1"

Soil Properties

Sand Site

Figure 8 shows a cross section of surficial deposits based
on the turf- and prairie-sand rain garden cores to a depth of
20 ft. The upper 4 ft of soil in the prairie rain garden generally
contained a greater amount of clay than the turf rain garden
and was described as a loam to clay loam rather than a sandy
loam. A thin clay layer was found in the prairie rain garden
core at a depth of approximately 4.5 ft. This same clay layer
was not found in the turf rain garden. Both gardens had sandy
loam interspersed with occasional layers of clay loam below
5 ft. The upper 4 ft of soil in the prairie rain garden showed
most sediments to be classified as sandy loam with some
gravel (fig. 8). The dissimilarity between soil profiles may be
due, in part, to rain garden construction practices. Because the
turf rain garden was located on a hill slope, a greater amount
of material had to be excavated to achieve a level surface.
This likely removed some of the surficial deposits that were
found in the prairie rain garden. A level surface was more
easily achieved with minimal excavation in the prairie
rain garden. The elevation of the turf grass rain garden
(postconstruction) was 0.77 ft lower than that of the prairie
rain garden.

Craig (2007) investigated soil and botanical
characteristics of both the turf- and prairie-sand rain gardens
and their relation with microbial community composition.
The results were then compared to those determined from
50 additional rain gardens and lawns surveyed around Dane
County, Wis., and are presented in table 2. The average soil
composition from three test plots in the turf-sand rain garden
had a higher percentage of organic matter than other surveyed
lawns in Dane County. Similarly, porosity was higher in the
rain gardens than in Dane County lawns, and this may have
been a function of the higher sand content and lower bulk
density in the rain gardens than in the Dane County lawns
(table 2).

Clay Site

Figure 9 shows a cross section of two cores from the clay
rain gardens. The prairie and turf cores were taken in 2003
and 2008, respectively. The turf- and prairie-clay rain gardens
had variable thicknesses of sand, sand loam, clay, and silt clay
deposits. The uppermost limiting clay layer was generally
at shallower depths in the turf rain garden, at approximately
1.5 ft below the soil surface, compared with approximately
3.0 ft below the soil surface in the prairie rain garden. A
continuous clay layer of variable thickness was distributed
across both rain gardens at a depth of 3 ft. The upper 4 ft of
soil in the turf-clay rain garden showed most sediments to be
classified as sandy clay, clay loam, and clay with some fine
layers of sand and gravel (fig. 9).
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Figure 8. Cross section of soils and subsurface deposits between the turf and prairie rain
gardens in sand.
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Similar to the sand rain gardens, soil and botanical
characteristics were examined in the clay rain gardens, and
their characteristic were then compared to those from 50
additional rain garden and lawn surveys around Dane County,
Wis. (Craig, 2007). The results are presented in table 2.

The average soil composition from three test plots in the
prairie-clay rain garden had a higher percentage of organic
matter than surveyed lawns in Dane County. Similarly,
porosity was higher the prairie- and turf-clay rain gardens
than in other Dane County rain gardens; this may have been a
function of the high sand content and low bulk density in the
prairie- and turf-clay rain gardens than in the Dance County
rain gardens (table 2).

Water Influent and Effluent

The main sources of influent to the rain gardens are
rainfall and snowmelt runoff from the roof surfaces and
rainfall falling directly onto the gardens. The water equivalent
for snow falling directly over the rain garden was not
included in the computation of influent, because actual snow
depths were not recorded at the field site. During the 5-year

monitoring period, the annual precipitation ranged from

24 percent below the 30-year normal of 32.95 in. in 2005 to
35 percent above normal in 2008 (fig. 10). Monitored storms
during the period ranged in precipitation depth from less than
0.05 in., the amount typically required for generating rooftop
runoff, to 4.0 in. Sixty-min precipitation intensities ranged

from 0.01 to 1.29 in/hr.

Sand Site

Annual rainfall-runoff volumes into the turf-sand and
prairie-sand rain gardens were nearly equal during each study
year and showed a difference in influent of 5 percent or less
for all years (table 3). In general, the prairie-sand rain garden
received slightly more influent volume than the turf-sand
rain garden. Some of the added volume can be attributed to
preferential rainfall patterns as well as a disproportionate
amount of snowmelt to the prairie-sand rain garden owing

to the roof’s orientation to the sun. Annual influent volumes
were slightly less in water year 2004 than in 2007 despite
having a greater annual precipitation depth in 2004. Much
of this discrepancy is due to the estimated water equivalency

Table 2. Summary of physical and botanical characteristics identified in the turf-grass and prairie rain gardens in a sand soil

and in a clay soil.

[Soil characteristics represent average values from three test plots per rain garden. Comparison of features in the study rain gardens was made to other
rain gardens surveyed around Dane County, Wis. --, data not available; nmol, nanomole]

Sand site Clay site Dane County’
Physical and biological variables Prairie  Turfgrass Prairie Turfgrass Raingarden Lawn

Age of rain garden, in years 3 3 3 3 2 --
Area of rain garden, in square feet 92.5 85.5 403 354 280 --
Organic matter, in percent 14.3 18.5 17.6 26.4 7.5 54
Bulk density, in grams per cubic centimeter 0.83 0.59 0.61 0.56 1.1 1.2
Pore space, in percent 69 76 77 80 61 56
Water content, in percent 21 23 22 37 26 24
Soil air, in percent 48 52 55 43 35 33
pH 7.2 7.0 7.1 7.1 6.2 6.6
Particle size distribution, in percent

Sand 45 59 50 47 37 35

Clay 16 15 14 14 16 16

Silt 39 26 37 39 47 49
Soil texture Loam Sandy loam Loam Loam Loam Loam
Vegetation richness, in number of plant species 29 10 39 21 34 --
Vegetation cover, in percent 60-70 85 100 100 63 --
Total microbial biomass, in nmol of lipids per gram of soil 199 209 209 194 174 131
Relative abundance of bacteria, in mole percent 23 29 24 31 25 28
Relative abundance of fungi, in mole percent 20 9 21 10 20 17

! Average value of 50 gardens in Dane County, Wis. (Craig, 2007).
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Table 3. Summary of influent and effluent volume measured in the turf-grass and prairie rain gardens at the sand and clay soil
study sites, water years 2004—08, Madison, Wis.

[--, data not available; values represent volumes into and out of rain garden from roof and direct precipitation; they include snowmelt for runoff but do
not include water equivalent for snow falling directly on rain garden. Therefore, the volumes in this table and those presented in table 4 will be different
because table 4 includes estimates of water equivalent for snow using available NOAA data]

Volume
(cubic feet)
Influent Effluent

Rain Garden 2004 2005 2006 2007 2008 2004 2005 2006 2007 2008
Turf-sand 1,279 749 1,142 1,341 2,157 0 0 0 0 1
Prairie-sand 1,275 764 1,206 1,354 -- 0 0 0 0 --
Percent difference 0 -2 -5 -1 -- 0 0 0 0 --
Turf-clay 5,436 2,923 4,247 5,198 - 191 35 10 12 -
Prairie-clay 5,859 2,423 3,608 4,437 8,331! 0 0 0 0 138!
Percent difference 7% 21% 18% 17% - 100% 100% 100% 100% --

!'In water year 2008, all roof runoff was directed to the turf-sand and prairie-clay rain gardens. This doubled the ratio of contributing to receiving area
to 10 to 1 and 8 to 1, respectively.

60 T T T T
B Sand rain gardens
[ Clay rain gardens
50 | O Dane County Regional Airport ]

PRECIPITATION AT RAIN GARDENS AND DANE COUNTY
REGIONAL AIRPORT, IN INCHES

2004 2005 2006 2007 2008
WATER YEAR

Figure 10. Precipitation totals at the clay and sand rain gardens study sites during each study year. The 30-year
(1971-2000) normal precipitation line shown above is based on precipitation measured at the Dane County Regional
Airport in Madison, Wis., approximately 10 miles from the study area.
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Figure 11. Accumulation of ice in downspouts draining rooftop runoff at
the clay study site.

of snowmelt during winter months. If the months of the year for
which precipitation was estimated by use of data from the NOAA

weather station at the Dane County Regional Airport in Madison, Wis.

(December through March) are excluded, then total precipitation in
water year 2007 was, in fact, greater than in 2004.

There were no monitored precipitation events during the initial
phase (2004—07) of the study that exceeded the storage capacity
of either the turf-sand or prairie-sand rain gardens; therefore, all
runoff was infiltrated and stored, lost to the atmosphere through
evapotranspiration, or recharged. In water year 2008, all runoff was
directed to only the turf-sand rain garden. Despite this doubling of
the contributing drainage area, only a single event on June 8, 2008,
produced measurable effluent in the turf-sand rain garden (table 3).
Some events prior to June 8 had similar precipitation depths and
intensities, but they did not result in effluent discharge. The interval
between these storms was long enough to allow soils to drain.
Therefore, the effluent discharge that resulted from the June 8 event

was likely due to a combination of not only high
precipitation intensity and depth but also saturated
soil conditions from previous events. Rainfall on
consecutive days from June 5 through June 8 totaled
more than 5 inches.

Clay Site

Annual runoff volumes into the turf-clay rain
garden were approximately 20 percent greater than
the prairie-clay rain garden for all but 1 study year
(table 3). It is unclear why more rooftop runoff
was measured in the turf-clay rain garden. One
possible explanation is the buildup of precipitation
due to prevailing winds. Although each downspout
drained an equal amount of rooftop area, prevailing
westerly winds had the potential to push some water
from the roof area draining to the prairie-clay rain
garden over to the roof area draining to the turf-
clay rain garden. Differences in measured annual
influent volumes could also be attributed to the
downspout design. Each downspout had an open
face that allowed runoff to occasionally escape the
channel walls. This small amount of runoff was
not collected or measured by the H-flumes and,
thus, was unaccounted for. This phenomenon was
more pronounced during winter months when the
downspout channel would fill with ice (fig. 11)
than during other seasons. Much of the water
from melting ice was not contained within the
downspout channel walls. Although each downspout
had this design limitation, it may have been more
pronounced in the downspout draining to the
prairie-clay rain garden.

The turf-clay rain garden had one or more
precipitation or snowmelt events or both resulting
in a measureable volume of runoff leaving the rain
garden during each study year (table 3). In most
instances, effluent volume was a result of high
precipitation intensity or depth or both. Nearly
one-half of all effluent volume measured from the
turf-clay rain garden was the result of two storm
events in May 2004 that produced 4.7 in. of rain
within 48 hours (appendix table 1-2). There were no
monitored events during the initial phase (2004—07)
of the study that exceeded the storage capacity of
the prairie-clay rain garden; therefore, all runoff was
infiltrated and stored, lost to the atmosphere through
evapotranspiration, or recharged. During water year
2008, all runoff was directed to only the prairie-
clay rain garden, thereby doubling the contributing
drainage area. All effluent volume measured during
this period was a result of four precipitation events,
each with precipitation depths in excess of 2.5 in.
(appendix table 1-2).




Evapotranspiration

In general, reference evapotranspiration followed a
seasonal pattern of the highest monthly totals occurring during
the warmer summer months of June and July, followed by
gradually decreasing values with the onset of plant senescence
in late fall (fig. 12). Because the turf grass evaluated as
part of this study closely resembled that of a reference
surface, estimated evapotranspiration values were only
slightly modified (Allen and others, 1998). Several species
identified in the prairie rain gardens were given a landscape
coefficient ranging from “low” to “high.” Regardless of soil
type, resulting correction coefficients for prairie vegetation
were lower than those for turf grass; therefore, estimates of
evapotranspiration were also lower.

Annual evapotranspiration for turf grass ranged from 21
to 26 in. in the sand and clay rain gardens for water years 2004
and 2005, respectively (table 4). This accounts for more than
one-half of direct annual precipitation. Evapotranspiration was
greater than direct precipitation in 2005, which is a result of
below-normal precipitation. Steuer and Hunt (2001) reported
similar average annual evapotranspiration amounts (23.9 in)
for the watershed in which this study was located, based on
hydrologic model simulations from 1993 to 1998. Because
the contributing drainage area to each rain garden was
approximately five times greater than the receiving area, the
percentage of turf-grass evapotranspiration, when compared
to direct precipitation plus influent, ranged from a low of 9 in
2004 to a high of 21 in 2005 for the clay rain garden, and from
alow of 11 in 2004 to a high of 25 in 2005 for the sand clay
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garden (table 4). The percentage of evapotranspiration was

reduced to 7 percent in water year 2008, when the contributing

drainage area to the turf-sand rain garden was doubled to

approximately 10 times the receiving area (table 4).
Differences in leaf anatomy, stomatal characteristics,

density, and aerodynamic properties of vegetation can

cause differences in evapotranspiration (Allen and others,

1998). Microclimate can also be important. Table 5 lists

several species of vegetation identified by Craig (2007) in

the prairie rain gardens and presents a correction coefficient

to reference evapotranspiration based on species, density,

and microclimate. Bare ground was the largest percentage

of ground cover (or lack thereof) in the prairie-sand rain

garden. Water may be lost from soil evaporation when ground

shading is less than 100 percent. Consequently, the reference

evapotranspiration rate for bare soils was increased by 10 to

20 percent (Costello and others, 2000). The weighted-average

landscape coefficient, K, for all identified species ranged

from 0.5 to 0.7 for the prairie-sand garden to 0.2 to 0.5 for the

prairie-clay garden. These values agree with similar landscape

coefficients for prairie vegetation recorded by Pitt and others

(2008). By use of this range of landscape coefficients, the

annual evapotranspiration for the prairie rain gardens was

estimated to range from 2 percent in 2004 to 12 percent in

2005 for the clay rain gardens, and from 6 percent in 2004

to 19 percent in 2005 for the sand rain gardens (table 4).

The percentage of evapotranspiration in the prairie-clay

rain garden decreased in water year 2008, ranging from 1 to

4 percent, when the contributing drainage area was doubled to

approximately eight times the receiving area (table 4).

AVERAGE MONTHLY PRAIRIE VEGETATION EVAPOTRANSPIRATION

WATER YEARS 2004-2008
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Figure 12. Annual distribution of reference evapotranspiration and range of estimated evapotranspiration for prairie

rain gardens at the sand and clay study sites.
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Table 5. Summary of vegetative species identified by Craig (2007) in the turf-grass and prairie rain gardens in sand and clay and

computed landscape coefficient for estimating evapotranspiration (Costello and others, 2000).

[--, data not available; K, species factor; K ;, density factor; K

me’

microclimate factor; K, , landscape coefficient]

Comparison of Rain Gardens

SAND SITE
i Percent cover Low range High range
Plant species Weinhted
in plots eighte
p Plot1 Plot 2 Plot3 average . K, K, K, K, K, K. K,
Bare ground 64 16 32 36 -- -- -- 1.1 - -- - 1.2
Carex vulpinoidea 8 1 5 2 0.4 0.5 0.5 1 0.6 0.9 0.9
Hierochloe odorata 8 0 4 5 .5 1 .6 .9 9 5
Schizachyrium 0 3 4 5 5 1 .6 9 9 .5
scoparium
Tradescantia 4 2 0 1 4 5 5 1 6 9 9 5
ohiensis
Penstemon 16 16 4 11 4 5 S5 1 6 9 9 5
digitalis
Monarda fistulosa 4 64 16 27 5 5 1 5
Rudbeckia 0 8 4 5 5 1 .5
subtomentosa
Eupatorium 0 8 0 1 4 5 5 1 6 9 9 5
perfoliatum
Cirsium arvense 4 1 5 5 1 5
Lactuca scariola 2 5 5 1
Glechoma 4 32 11 5 5 0 3 2
heterophylla
CLAY SITE
. Percent cover Low range High range
Plant species T
in plots Plot1  Plot2  Plot3 'lcionte K, K K K K K K
average s d 'mc L s d 'mc L
Bare ground 0.5 0.5 1 1 -- -- 0.5 1.1 - -- 0.9 1.2
Panicum virgatum 16 0 0 5 0.4 1.1 5 2 0.6 1.3 9
Iris versicolor 0 16 5 1 1.1 5 1 3 1.3 9 4
Carex lupilina 16 0 16 10 4 1.1 5 2 .6 1.3 9
Scirpus atrovirens 8 0 i 1.1 5 4 9 1.3 9 1.1
Rudbeckia 0 4 2 4 1.1 5 2 .6 1.3 9 7
subtomentosa
Physostegia virginica 7 0 4 1.1 5 2 .6 1.3 9
Thalictrum 5 5 1.1 5 1.3
dasycarpum
Helenium autumnale 16 64 0 26 1.1 5 3 1.3 9 4
Aster novae-angliae 2 1.1 S5 1.3
Lysimachia 16 1.1 5 1.3 9 1.1
quadriflora
Poa pratensis 32 8 13 4 1.1 5 2 .6 1.3
Erigeron 0 64 21 1.1 5 3 1.3 9 4
philadelphicus
Lactuca serriola 1 1 4 1.1 .5 2 .6 1.3
Taraxacum officinale 8 2 1.1 5 .06 3 1.3
Chenopodium album 0 0.4 1.1 0.5 0.2 0.6 1.3 0.9 0.7
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Recharge, Infiltration, and Storage

Recharge was estimated by use of the water-balance
formula:

R=P+V,-V_ —ET 2)
where

R is recharge, in inches;
P is precipitation, in inches;

V. is the volume of runoff into the rain garden,
in inches;
v, is the volume of runoff out of the rain garden,

in inches; and
ET is evapotranspiration, in inches.

Table 4 shows the amount of water for each variable
described in the formula above as well as the relative
percentage of water outputs to inputs. For comparison,
volumes in table 4 were normalized by rain-garden area. Rain
gardens planted with prairie vegetation are expressed in terms
of a range of low to high recharge to coincide with a similar
range in evapotranspiration. At both the sand and clay study
sites, the rain garden planted with turf grass received slightly
more annual influent than the rain garden planted with prairie
vegetation. Although more water was available for recharge
in the turf-grass rain gardens, the overall percentage of annual
recharge in the turf-grass rain gardens was slightly less than in
the prairie rain gardens. This is largely attributable to a much
smaller amount of evapotranspiration estimated for prairie
species than for turf species. If rooftop runoff were equally
distributed between the turf-grass and prairie-rain gardens, the
difference in percent recharge between turf grass and prairie
vegetation would become even greater.

Differences in annual recharge between the turf-grass
and prairie-rain gardens in clay were slightly greater than the
differences between those vegetative species in sand. The
average difference between percent annual recharge in the turf
grass and prairie rain gardens in clay was 7 percent compared
to 4 percent in sand (using the lower estimate of annual
percent recharge for the prairie rain gardens). Differences in
vegetation may therefore have a more pronounced effect on
recharge given similar soil structure.

In general, each rain garden, regardless of vegetation
or soil type, was capable of storing and infiltrating most of
the runoff during the 5-year study period. This might suggest
that use of a specific vegetative species in a rain garden has
no bearing on its overall performance. However, the robust
design of the rain gardens tested in this study may have been
the primary reason for their success. A simple calculation was
done to characterize the approximate size of storm required
to exceed the storage capacity of each rain garden. Assuming
zero infiltration, the minimum depth of precipitation required
to fill the turf- and prairie-clay rain gardens would be
approximately 1.4 and 1.6 in, respectively. Both rain gardens
in sand would require approximately 1.2 in. of precipitation.
Total storm precipitation (excluding snowfall) exceeded
these thresholds approximately 10 percent of the time over
4 years in both the clay and sand rain gardens (fig. 13). A rain
garden construction by use of a 5-to-1 ratio of contributing
to receiving area (4 to 1 for the prairie-clay rain garden)
was, therefore, fully capable of retaining approximately
90 percent of all precipitation events. However, because the
water-retaining capacity of a rain garden is both a function of
above- and below-ground storage of runoff from a source area
as well as simultaneous infiltration of runoff, the capacity to
store runoff from a precipitation or snowmelt event or both
is beyond that suggested by ponding depth alone. Because

Table 6. Comparison of observed and predicted precipitation events exceeding the storage capacity, both above- and below-
ground, in the turf- and prairie-clay rain gardens, April through November, water years 2004-07.

Storage volume

Median infiltration

Number of events exceeding

(inches) rate (inches/hour) rain-garden storage
Rain garden Above ground Below ground Inches/hour Predicted Observed
Turf 1.36 0.6 0.28 6 5
Prairie 1.57 1.34 .88 1 0




of infiltration, an even greater amount of precipitation would
likely be retained and infiltrated over time if the precipitation
intensity were equal to or less than the median infiltration rates
listed in table 6. During April through November 2004-07,
only 3 measured precipitation events in the prairie-clay
rain garden and 13 in the turf-clay rain garden had 60-min
precipitation intensities greater than the median infiltration rate
as well as precipitation depths greater than the minimum depth
required to exceed rain-garden storage capacity (assuming
zero infiltration). There were no precipitation events in the
sand rain gardens that satisfied the same criteria.

Additional runoff volume can also be temporarily
stored by the soils below a rain garden to a depth equal to the
uppermost limiting layer. The volume of these void spaces in

Comparison of Rain Gardens 21

the soil, the drainable porosity (or specific yield), may have
more influence on a rain garden’s ability to temporarily store
runoff than the ponding depth. The specific yield is the ratio of
the volume of water that drains from a saturated soil owing to
the attraction of gravity to the total volume of the soil (Fetter,
2001). By use of the same calculations previously described,
an estimate was made of the volume of water needed to
saturate the soils below the turf- and prairie-clay rain gardens.
The volume, after normalizing by rain garden and contributing
rooftop area, was then compared to individual precipitation
events that equaled or exceeded the soil volume and resulted
in pooled water. The approximate depth of soil down to the
uppermost limiting layer, based on soil-core descriptions,

was 1.5 and 3 ft for the turf- and prairie-clay rain gardens,

100
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CUMULATIVE FREQUENCY, IN PERCENT
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Sand rain gardens

= Clay rain gardens
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225 25 275 3 325 35 315 4 425 45
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Figure 13. Cumulative frequency of precipitation measured at the sand and clay study sites between water years 2004-08.
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respectively (fig. 8). Soils down to these respective depths
ranged from sand to sandy clay. An average soil texture of silt
was selected to approximate the full range of specific yield

in the gardens. Specific yield for unconsolidated silt deposits
was estimated to be 18 percent based on published values
(Johnson, 1967). By use of these parameters, the volume of
runoff from the rooftop combined with the amount of direct
precipitation required to saturate the turf- and prairie-clay
rain gardens was 0.61 and 1.34 in., respectively. The number
of precipitation events equal to or exceeding these thresholds
was summed for April through November 2004—07. Forty-
six of the 62 precipitation events equal to or exceeding 0.61
in. resulted in pooled water in the turf-clay rain garden. In

the prairie-clay rain garden, 11 out of 17 precipitation events
equal to or exceeding 1.34 in. resulted in pooled water. The
total storage capacity of each rain garden would be a sum

of storage both above and below ground. Table 6 details the
quantities of each variable used to predict when the total
storage capacity of the turf- and prairie-clay rain gardens
would be exceeded and compares them to the observed
number of events that exceeded storage capacity during April
through November 2004—-07. Of the six observed precipitation
events exceeding the turf-clay rain garden total storage
capacity, five were predicted using the values in table 6.
Similarly, a single precipitation event was predicted to exceed
the total storage capacity of the prairie-clay rain garden and
none was observed. The criteria used to create table 6 were
then applied to the prairie-clay rain garden in water year 2008,
when the contributing drainage area was doubled. Four out of
four predicted precipitation events exceeding the total storage
capacity of the prairie-clay rain garden were observed.

Many design manuals promote the area of a rain garden
as an important variable for accepting runoff, emphasizing
the ratio of drainage area to receiving area. Oftentimes, those
space requirements cannot be met or poor soil conditions
preclude the location of a rain garden in an area where
space may be available. If surficial area is unavailable, then
storage of runoff can be created by excavating to a greater
depth, even in the presence of clay. In the prairie-clay rain
garden, for example, the time required to go from saturated
to pre-event soil-moisture conditions could range from
approximately 7 to 34 hr, well below the 48 hr commonly
prescribed as a design specification for standing water. This
estimate assumes an infiltration rate in the limiting clay layer
0f 0.04 to 0.20 in/hr (Hillel, 1982). Sixty-eight percent of all
precipitation events measured during April through November
200407 had an antecedent dry period greater than 34 hr. By
applying measurements of the appropriate soil properties,
environmental managers and engineers may improve the
tailoring of design specifications of rain gardens for new or
retrofitted areas.

Effects of Antecedent Conditions and
Precipitation Intensity on Storage

The lack of appreciable effluent from the turf and prairie-
vegetated rain gardens is a function of the above- and below-
ground storage capacity of the rain garden and the infiltration
rate of the underlying soils. If the supply rate of water to the
rain garden is greater than the infiltration rate, excess water
will accumulate in the rain garden and eventually become
runoff when the level of water exceeds the height of the rain
garden berm. Although effluent discharge was rare, there
were multiple times when influent exceeded infiltration into
underlying soils and resulted in pooled water.

Results from the CART analysis of climatologic
variables and the presence of pooled water indicated that
60-min precipitation intensity largely determined whether
or not water would pool in both the turf- and prairie-sand
rain gardens (fig. 144). Most discharge events that produced
“wet” conditions were from high-intensity precipitation
events of greater than 0.24 in/hr. The high saturated hydraulic
conductivity of sand allows water to infiltrate quickly,
oftentimes exceeding the rate at which water would discharge
into the rain garden. However, as the rate of water influent to
the rain garden exceeded the infiltration rate, water would be
stored above ground within the rain-garden boundaries. Of the
few discharge events producing “wet” conditions from low
intensity events, all were a result of saturated soils from recent
events.

Similar to the sand rain gardens, both precipitation
intensity and the number of antecedent dry days between
precipitation events were important factors that controlled
when water would pool in the turf-clay and prairie-clay rain
gardens (fig. 14B). As in the sand rain gardens, the results of
the CART analysis were similar for both vegetation types.
The low saturated hydraulic conductivity of clay would
require considerably more time between precipitation events
to drain than sand. Subsequently, most “wet” conditions in
both the turf-clay and prairie-clay rain gardens were a result
of precipitation within the last 5 days. Similarly, Ishtok
and Boersma (1986) concluded that antecedent moisture is
more important than the magnitude or intensity of rainfall in
controlling the occurrence of runoff. Pitt and others (1999)
found infiltration rates in clay were affected by a strong
interaction of compaction and moisture. Antecedent moisture
could act as a surrogate for antecedent dry days, because
soil moisture would decrease with increasing time between
precipitation events. Secondary to antecedent dry days was
precipitation intensity. All “wet” conditions in the prairie-clay
rain garden were a result of not only a short amount of time
between precipitation events but also precipitation intensity
greater than approximately 0.3 in/hr. This condition was also
true in the turf-clay rain garden, although the relation was not
quite as strong.
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Seasonal and Temporal Changes to Infiltration
Rates

Infiltration rates were estimated at each rain garden
by use of a simplified falling head technique. Estimates of
infiltration rates for soil types and vegetative species were
compared to discern seasonal and temporal changes. Median
infiltration rates in sand rain gardens were greater than those
in clay, regardless of vegetative species. Furthermore, in
both sand and clay, prairie rain gardens had higher median
infiltration rates than turf rain gardens. In general, infiltration
rates were higher during spring and summer than fall and
winter for all rain gardens.

Sand Site

Table 7 shows the number of discharge events producing
pooled water during each water year as well as a statistical
summary of estimated infiltration rates during the study
period. Median infiltration rates in the prairie-sand rain
garden are greater than in the turf-sand rain garden at 4.2
and 2.5 in/hour, respectively. The large standard deviation
in the prairie-sand rain garden suggests greater variability in
infiltration rates (fig. 15). At the beginning of the study, the
prairie-sand rain garden had a greater number of discharge
events that resulted in pooled water than did the turf-sand
rain garden (table 7). That may have been a function of the
structure of the soil and immature root development of the
prairie vegetation shortly after planting. The upper 4.5 ft of
soil in the prairie-sand rain garden contained greater amounts
of clay and silt than the turf-sand rain garden. Destruction of
the natural soil matrix as well as removal of mature vegetation
during rain-garden construction in the sand study area may
have influenced infiltration rates during the first study year.

In later years, as the prairie root system matured, perturbation
of the soils may have allowed more rapid infiltration and,
thus, fewer “wet” conditions. Improvements to soil structure
and infiltration rates in the prairie-sand rain garden may have
been more prevalent than in the turf-sand rain garden because
of the abundance of sand directly beneath the turf-sand rain

Table 7.
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garden. Evidence of improved infiltration rates in the prairie-
sand rain garden is illustrated in figure 15. Median values

for estimated infiltration rates in the prairie-sand rain garden
steadily increased from 2004 through 2006. A slight decrease
in 2007 may be a result of when the discharge events occurred.
Five discharge events resulted in pooled water in the prairie-
sand rain garden in 2007, and three of them were in August.
By comparison, in 2006, three of the four discharge events that
produced “wet” conditions were in May. Spring in this case

is defined as March through May and summer is defined as
June through August. Although results of the Mann-Whitney
test indicated no difference in infiltration rate in the prairie-
sand rain garden between spring and summer (at the 5-percent
significance level), many of the estimated infiltration rates

in the prairie-sand rain garden were greater in spring than in
summer, especially during 2006 and 2007 (fig. 16). Diamond
and Shanley (1998) found a similar seasonal pattern when
assessing the spatial and temporal variability of infiltration
capacity of major soil types in Ireland. This pattern was not
reproduced in the turf-sand rain garden, which showed a
similar range of infiltration rates in the summer and spring.
Unlike the prairie-sand rain garden, infiltration rates in the
turf-sand rain garden remained relatively consistent, ranging
from 2 to 4 in/hr, except in 2005 when a single infiltration
rate of nearly 10 in/hr was estimated. It is unclear why this
single infiltration rate is much larger than all the others, but it
was included when changes to infiltration rates over time and
season in the turf-sand rain garden were compared.

Winter and fall were excluded from statistical tests due
to a limited sample population. Water pooled in the prairie-
sand rain garden only twice during winter, in February 2004
and January 2005, resulting in an estimated infiltration rate of
0.75 and 2.28 in/hr, respectively. There were no pooled water
events during winter in the turf-sand rain garden. Muthanna
and others (2006) found the hydraulic performance of an
experimental rain garden in Norway was not impacted by the
climatic factors experienced during the cold season. Given the
paucity of pooled water conditions in the sand rain gardens
during winter months, it is likely their hydraulic function was
not appreciably altered by frozen soils.

Statistical summary of infiltration rates in the turf-grass and prairie rain gardens in sand and clay.

[Precipitation events resulting in pooled water were used to estimate an infiltration rate by use of the falling head technique. --, not measured; SD,

standard deviation; COV, coefficient of variation; in/hr, inches per hour]

Number of events with pooled water

Estimated infiltration rate (in/hr)

Water year All water years
Rain Garden 2004 2005 2006 2007 2008 Mean Median SD cov
Turf-sand 16 7 14 18 25 3.00 2.50 1.60 0.50
Prairie-sand 24 4 7 14 -- 6.50 4.20 4.70 0.70
Turf-clay 25 11 20 18 -- 0.31 0.28 0.19 0.60
Prairie-clay 5 3 3 7 10 1.00 0.88 0.55 0.54
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Clay Site

Table 7 shows the number of discharge events producing
pooled water during each water year as well as a statistical
summary of estimated infiltration rates during the study
period in the clay rain gardens. Median infiltration rates in the
prairie-clay rain garden are more than three times greater than
in the turf-clay rain garden at 0.88 and 0.28 in/hr, respectively.
Despite the disparity between overall median infiltration
rates, the turf-clay rain garden exhibited a general increase
in annual median infiltration rates from 2004 through 2007,
ranging from less than 0.2 in/hr in 2004 and 2005 to more than
0.4 in/hr in 2006 and 2007 (fig. 17). Although the increase in
infiltration rates appears modest, it represents an appreciable
improvement over those measured prior to rain-garden
construction. Infiltration rates of approximately 0.1 in/hr were
measured by use of a double-ring infiltrometer at the clay
rain-garden site prior to rain-garden construction. Destruction
of the natural soil matrix by excavation and compaction can
decrease hydraulic conductivity (Pitt and others, 1999; Legg
and others, 1996). Because the soil structure prior to this study
was likely degraded from construction activities, it would not
be unusual to see an increase in infiltration rates regardless
of vegetation type. Hino and Shutto (1987) found the growth
of grass altered the structure of soils within 2 months of
establishment, and they measured increases in saturated
hydraulic conductivity from 0.24 in/hr in bare soil to nearly
4.0 in/hr for grass-covered soil. Despite annual differences
in median infiltration rates, seasonal differences were not as
apparent. Comparison of seasonal infiltration rates by use of
a combination of the Kruskal-Wallis test for multiple groups
and Dunn’s test suggested that infiltration rates in the turf

garden were greatest during summer months, at the 5-percent
significance level. Winter infiltration rates in the turf-clay
rain garden were the lowest of all seasons and had a median
value of 0.11 in/hr, which is the same as the infiltration rate
measured prior to rain-garden construction. Furthermore,
infiltration rates increased by season, with winter rates the
lowest, then spring, fall, and finally, summer the highest

(fig. 18).

Similar to the turf-clay rain garden, an increase in annual
median infiltration rates was also measured in the prairie-clay
rain garden (fig. 17). Rates ranged from 0.6 in/hr to more
than 1.0 in/hr in 2004 and 2008, respectively. As with turf
grass, prairie vegetation can improve hydraulic conductivity
by creating or improving macropores or both from extensive
root growth (Beven and Germann, 1982). Under favorable
circumstances, macropore systems can be developed in as
little as 1 to 2 years (Beven and Germann, 1982). Little can
be inferred about the direction of median infiltration rates in
2005 and 2006 because of the lack of data. Because a lack of
pooled water would preclude estimation of an infiltration rate,
as was often the case in the prairie-clay rain garden, the rate
at which water infiltrated into the soil was likely greater than
the rate water flowed into the rain garden. Therefore, fewer
rather than more data points in figure 17 would qualitatively
suggest improved infiltration rates given similar precipitation
characteristics to other study years. Results of the Mann-
Whitney test indicate no difference between spring and
summer infiltration rates at the 5-percent significance level
for the prairie-clay rain garden. Because the prairie-clay rain
garden lacked “wet” conditions during the fall and winter, an
evaluation of seasonal differences was limited to only spring
and summer.
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Vegetative Effects on Soil Moisture

Analysis of the temporal variation of soil moisture
can be qualitatively useful in estimating the timing, depth,
and duration of recharge events (Delin and Herkelrath,

1999). Interpretation of fluctuations in soil moisture in the
unsaturated zone is based on the premise that water in the
soil above the vegetative-rooting depth travels upward in
response to evapotranspiration. Water below that depth
drains downward to the water table as recharge. This
evapotranspiration/drainage boundary is further described by
Delin and others (2000) who used soil moisture as a means to
compute a volumetric mass balance of the unsaturated zone.

Time-lapse imagery in conjunction with the vertical soil-
moisture profile illustrates the combined effect of root systems
and evapotranspiration on soil moisture in the prairie-clay
rain garden during an extended dry period in 2005 (fig. 194).
In figure 194, a diurnal fluctuation in soil moisture with
increasing depth becomes more evident from May through
August 2005. Multiple days with no precipitation force the
prairie root system to tap into deeper sources of soil moisture.
The development of root systems into deeper soil depths may
increase the infiltrative capacity of a rain garden by creating
macropores and other fissures that allow for rapid water
movement. This might also explain, in part, the larger median
infiltration rate measured in the prairie-clay rain garden
compared with that in the turf-clay rain garden (table 7). The
diurnal fluctuation in soil moisture over the same time period
is not as prominent in the turf-clay rain garden (fig. 19B). This
is likely due to the shallow root depth of turf grass. Only the
uppermost soil layer (0.5 feet below land surface) showed
appreciable decline in soil moisture.

In September 2008, an effort was made to track the
temporal changes in soil moisture after artificially flooding
the prairie-clay rain garden. Because there was evidence of a
limiting clay layer approximately 3 ft below the land surface
(fig. 8), water was expected to pool and accumulate at or near

Comparison of Rain Gardens 3

this depth. However, if the prairie root system was capable of
penetrating through the limiting layer, then water could slowly
percolate downward. Soil moisture was measured vertically by
use of a neutron logger at four intervals: before flooding, 1 hr
after flooding, and 3 and 6 days after flooding. As expected,
soil moisture rapidly increased in the uppermost soil layers
shortly after flooding of the rain garden began (fig. 20). After

1 hr, modest increases in moisture levels continued down

to a depth of approximately 8 ft, which is 5 ft below the
demarcation of the upper limiting layer. Soil moisture returned
to pre-flooding levels from the uppermost layer to a depth of
approximately 6 ft after 3 days; however, moisture from 6

to 8 ft remained high even after 6 days. It is likely a second,
thinner layer at approximately 8 to 9 ft was limiting the
downward movement of water and causing a perching effect,
and, thus, elevated moisture levels above 8 ft for an extended
period of time. Despite the lower limiting layer, water still
advanced downward as recharge, as is evident by the increase
in soil moisture after 3 and 6 days post rain garden flooding to
depths below 10 ft. An increase in soil moisture in the upper
limiting layer, although small, might indicate perturbation of
the soil by prairie roots. The clay rain gardens were excavated
shortly after the flood test to verify the extent of soil structure
and root morphology. The results are discussed later in this
report.

Additional evidence of deep penetrating prairie root
systems is further illustrated in the prairie-sand rain garden
(fig. 21). In 2005, there was little change in soil-moisture
levels after extended periods of no precipitation in the turf-
sand rain garden at 1.6 feet below land surface and the prairie-
sand rain garden at 2.6 feet below land surface. In 2007,
however, soil moisture in the prairie-sand rain garden began
to display a diurnal fluctuation during extended dry periods,
which is an indication of the effect of evapotranspiration. In
contrast, the turf-sand moisture levels showed a steady decline
in soil-moisture levels, and this is more likely a function
of evaporation and drainage than the water needs of a root
system.
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Comparison of Soil Properties and Root
Morphology

In October 2008, 5 years after planting the rain gardens,
an observation trench was excavated through the approximate
center of the prairie- and turf-clay rain gardens to characterize
differences in soil properties and rooting between vegetation
types. Although the turf- and prairie-clay rain gardens had
similar soil textures and soil-horizon designations, there were
striking differences in soil characteristics between the two
clay gardens. Table 8 details physical characteristics of the soil
profiles in the turf- and prairie-clay rain gardens.

The differences in soil properties were associated
with water and air movement within the two rain gardens.

The soil under the prairie-vegetated rain garden, although
possessing the remnants of a limiting clay layer, appeared
well-drained. At no time during field sampling did water enter
the prairie-clay trench from the profile wall or its bottom.
Conversely, there was clear evidence of a perched water table
at approximately 0.7-1.0 ft below the surface of the turf-
planted rain garden. Water not only seeped into the turf-clay
trench during sampling, but a strongly gleyed horizon was
present from 1.05-2.95 ft and was indicative of an anaerobic,
saturated environment; a weakly gleyed horizon in the prairie-
clay garden (0.66 ft in thickness) ended at 1.51 ft below the
surface. Oxidized mottles and other redox features within

the master B horizon of the turf-clay rain garden further
indicated a fluctuating perched water table. Moreover, the Bt
horizon above the gleyed layer in the turf-clay soil possessed
a large enough clay fraction that it was classified as a silt
loam relative to the Bt horizon in the prairie-clay soil. This
observation may indicate a transfer of the finer clay fraction to
lower horizons in the prairie-clay profile. Finally, a substantial
clay fraction was found in the lower B horizons of both rain
gardens as shown by an angular, blocky to somewhat platey
structure as well as the laboratory particle-size classification of
silty clay loams.

The 2008 soil-profile descriptions also indicated
differences in flora and fauna activity between the prairie- and
turf-clay rain gardens (table 8). Many fine roots extended
from the surface down to 0.46 ft in the turf-clay rain garden
(absolute rooting depth in the turf-clay garden was 0.56 ft),
but roots extended to a depth of 4.7 ft in the prairie-clay
rain garden. Moreover, many roots were found within the
Btg horizon of the prairie-clay garden but they were absent
from the Btg horizon of the turf-clay rain garden. The greater
amount and depth of rooting in the prairie-clay rain garden
coincided with greater macrofauna activity, indicated by many
earthworms, along with many abandoned worm channels and
cavities once occupied by roots. These channels were either
lined with organic matter or were redox features indicating the
movement of water and air into lower horizons of the prairie-
clay rain garden. Conversely, there was little evidence of
macrofauna activity in the soil under the turf. This biological

activity was also evident in the horizon boundaries of the
prairie-clay soil which were wavy, irregular, and clear. In
contrast, the horizon boundaries of the turf-clay soil were
largely smooth and abrupt. Collectively, these differences in
soil properties point to greater pedoturbation in the prairie-clay
rain garden than in the turf-clay rain garden.

Although the absolute values of dry root mass were
low relative to mature turf and prairie systems, differences
were evident between the prairie-clay and turf-clay gardens
(table 8). The root number and dry mass in each rain garden
mirrored the differences of organic matter throughout each
profile, in that the prairie-clay garden had more dry root mass
than the turf-clay rain garden. Although both soils had an Oi
and an A horizon, the organic accumulation of the prairie-clay
rain garden was 0.4 in thicker in the Oi horizon and 4 percent
greater in the A horizon relative to the turf-clay soil. This
percent difference in organic matter between gardens carried
into the B horizons, where the prairie soil averaged 1 percent
greater organic matter than the turf-clay garden. These biotic-
derived differences appear to also correlate with differences
in soil bulk density between the two rain gardens. Both rain
gardens displayed the typical increase in bulk density with
depth; however, the soil of the prairie-clay rain garden was
less dense overall than the turf-clay soil, particularly in the A
and Btg horizons..

Similar to the differences in dry root mass, rooting
behavior also varied between the prairie- and turf-clay rain
gardens. Roots were present in all horizons sampled within the
prairie-clay soil, where the absolute rooting depth extended
to 4.7 ft; in contrast, roots were found only in the A and Bt
horizons within the turf-clay rain garden. The absence of
roots below 1.05 ft in the turf-clay soil may be explained by
the interaction between the shallow-rooting turf grass and
the saturated, anaerobic character of the thick Btg horizon.
Conversely, the prairie-vegetation species appeared to
penetrate the “limiting layer” and allowed mixing of surface
organics, macrofauna, water, and air deeper into the profile.

There were marked differences in rooting morphology
(for example, in length, density, and amount) between the
prairie- and turf-clay rain gardens (table 9). The mean dry
root mass per volume of soil within the A horizon of the
prairie-clay rain garden was almost double that of the turf-
clay rain garden; root mass within the Bt was similar between
rain gardens. The SRL was 23 percent lower and 14 percent
greater in the A and Bt horizons, respectively, of the prairie-
clay soil than in the same horizons in the turf-clay soil.
Conversely, the RLD was 75 percent greater in the A horizon
of the prairie-clay rain garden relative to the turf-clay soil, and
the RLD in the Bt horizon was similar in both rain gardens.
These differences in rooting morphology concurred with the
differences in SOM and bulk density between the two rain
gardens, where greater root mass equated with higher SOM
and lower bulk density. Moreover, these quantitative measures
capture the interaction between vegetation types and soil that
controls rain-garden function.
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Table 9. Rooting dynamics below the turf-clay and prairie-clay
rain gardens, October 2008.

[SRL, specific root length; RLD, root length density. mg/cm?, milligrams of
root per volume of dry soil; m/g, meters of root length per weight of dry root;
cm/cm’, centimeters of root length per volume of dry soil; --, not measured]

Turf-clay rain garden

Horizon  Depth (ft) Mean root Total SRL RLD
dry mass (m/g) (cm/cm?)
(mg/cm?)
(0)1 0-0.03 - - -
A 0.03-0.46 0.10 38.0 0.48
Bt 0.46-1.05 .03 61.3 .19
Btg  1.05-2.95 - - -
Prairie-clay rain garden
Horizon  Depth (ft) Mean root Total SRL RLD
dry mass (m/g) (cm/cm?)
(mg/cm?)
(0)1 0-0.07 - - --
A 0.07-0.33 0.18 46.9 0.84
Bt 0.33-0.85 .04 70.3 .20
Btg 0.85-1.51 .02 68.9 .19
Bt2 1.51-3.28 .01 30.2 .07

The length of a plant’s root system largely controls its
acquisition of water and nutrients, as well as the development
of soil structure. Although species vary widely in their specific
root length, the relative differences observed between the
two rain gardens studied here helps explain the differences
observed in soil development (Fitter, 1985). Species with
a relatively small investment in root biomass per unit root
length, high SRL, may possess an advantage for exploiting
pulses of water in the soil by quickly increasing root length
(Eissenstat and Caldwell, 1989; Chapin, 1989). Moreover, a
lower energy cost per unit length of root may facilitate soil
development, as the plant can afford to explore a greater
volume of soil and typically turn over roots at higher rates
(Grime and others, 1986). In a study of orange trees grown in
disturbed soil, rootstocks with higher SRL and greater RLD
were able to extract water more rapidly than those with lower
SRL (Eissenstat, 1991).

This interaction between roots and soil may explain the
greater soil development in the prairie-clay rain garden than
in the turf-clay rain garden. Within the A horizon, the prairie
roots not only had a greater mass of roots per volume of soil,
but also a lower mass investment per length of root such that
there was almost double the rooting length per volume of soil
in the prairie-clay rain garden relative to the turf-clay rain
garden. This trend between rain gardens carried into the Bt
horizon, although the differences were much less pronounced
than in the A horizon. Therefore, the ability of the prairie
vegetation to build an energetically less-expensive root system
may have facilitated higher rates of root proliferation, leading

to greater soil development and improved infiltration for water
and air, than in the turf-clay rain garden. The 2008 profile
observations in table 8 support this hypothesis.

Finally, the absolute values of root mass, SRL, and RLD
for these rain gardens were low relative to published values
for grasses. The relative immaturity of these systems and the
one-time sampling late in the growing season may help explain
this difference. Moreover, the differences in soil development
reported here are based on two rain gardens. Sequential
coring and additional treatment replication would increase the
reproducibility of these data.

Conclusions

Recent trends in urban runoff mitigation have resulted in
technologies that focus on infiltration. One such technology,
known as a rain garden, is a shallow depression that accepts
runoff generated from nearby impervious surfaces and
infiltrates that runoff back into the underlying soil. In addition,
rain gardens may provide some level of water-quality
benefit by settling, filtration, adsorption, decomposition, ion
exchange, and volatilization. Rain gardens range in size but
are commonly used as a way to retrofit existing urban areas
where land requirements often preclude larger structures.
Although the use of rain gardens is increasing, there appears to
be no clear consensus on how soils at the site might limit the
use of an infiltration device. The use of rain gardens and other
infiltration devices could be expanded if additional information
about soil amendments and sizing criteria was available to
mitigate the uncertainty of requiring infiltration in soils that
have low infiltration rates.

To that end, the U.S Geological Survey, in cooperation
with a consortium of 19 cities, towns, and villages in Dane
County, Wis., evaluated the effectiveness of rain gardens with
different soil types and vegetative species for stormwater
infiltration. Two rain gardens, one planted with turf grass and
the other with native prairie species, were constructed side-
by-side in two locations of different soil types, sand and clay.
Instruments were installed to measure the volumetric mass
balance of each rain garden from late 2003 through 2008.
Root morphology, soil texture, and other subsurface properties
were characterized so that differences in storage capacity and
infiltration rates between vegetation and soil type could be
understood.

Results of the study show that each rain garden, regardless
of vegetation or soil type, was capable of storing and
infiltrating most of the runoff during the 5-year study period.
Median infiltration rates for rain gardens in sand were greater
than those in clay. Within each soil type, rain gardens with
prairie vegetation had greater median infiltration rates than
those with turf grass. Infiltration was generally highest during
spring and summer and lowest during winter. Despite reduced
infiltration rates during months when soils were likely frozen,
the hydraulic function of the rain gardens did not appear to be
appreciably altered.



The success of the rain gardens was primarily because
the 5 to 1 ratio of contributing area to receiving area (4 to 1 for
the prairie-clay rain garden) and 0.5 ft depth were capable of
storing and infiltrating nearly all the stormwater. Even when
the contributing area was doubled to 10 to 1 in the turf-sand
rain garden and 8 to | in the prairie-clay rain garden, only a
limited amount of outflow from the rain garden was generated.
Approximately 90 percent of all precipitation measured over
the 4-year study was capable of being stored in the gardens
(assuming an infiltration rate of zero). The percentage of
precipitation events fully retained by each rain garden
increased to nearly 100 percent when the median infiltration
rate and specific yield of subsurface soils were included in the
estimates. Precipitation intensity and antecedent dry days were
the dominant secondary controlling factors in determining
when the storage capacity of a rain garden might be exceeded
and result in pooled water above ground.

Because of the large area of rooftop contributing runoff
to each rain garden, evapotranspiration was a small percentage
of the overall water balance. Therefore, most of the annual
runoff volume influent to each rain garden, regardless of
vegetation or soil type , was recharged back into groundwater.
However, differences in annual recharge between the turf
grass and prairie rain gardens in clay were slightly greater than
the differences between rain gardens planted with the same
vegetative species in sand. This is largely because a much
smaller amount of evapotranspiration was estimated for prairie
species than for turf grass.

Examination of soil development and root morphology in
the rain gardens 5 years after planting clearly showed greater
biological activity of flora and fauna in the prairie-clay rain
garden than in the turf-clay rain garden. Roots in the prairie-
clay garden were found to a depth of 4.7 ft compared with
0.46 ft in the turf-clay rain garden. The greater amount and
depth of rooting in the prairie-clay rain garden coincided with
greater earthworm activity along abandoned worm channels
and cavities once occupied with roots. These channels were
either lined with organic matter or redox features, indicating
the movement of water and air into lower horizons within
the prairie-clay rain garden. Moreover, the prairie roots had
a lower mass investment per length of root such that there
was almost double the rooting length per volume of soil in
the prairie-clay soil relative to the turf-clay soil. Collectively,
these differences point to greater pedoturbation and soil
development in the prairie-clay rain garden relative to the turf-
clay rain garden, and this may result in greater capacity of the
prairie-clay rain garden to store and infiltrate stormwater than
the turf-clay rain garden.

By applying measurements of the appropriate soil
properties to rain-garden design, environmental managers and
engineers may improve the tailoring of design specifications
of rain gardens for new or retrofitted areas. If surficial area
is unavailable to temporarily store runoff above ground, then
storage can be created by excavating to a greater depth, even
in the presence of clay.
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