

# Ecological sanitationan overview

Professor Dr. Petter D. Jenssen
The Norwegian University of Life Sciences

Course: "Appropriate sanitation for the developing world", August 15. 2005



## Ecosan toilet center Bangalore India





www.ecosan.no



# Ecosan toilet center Bangalore India



- Serves 800 people
- Produces 50 tonn bananas/year
- Produces compost for sale
- Employs 10 people
- Annual cost
   10 US\$/user



# Experience from Bangalore

- Application of compost increases the plants tolerance to water stress
- Application of compost is essential for nutrient utilization in weathered (red) tropical soil





1st. generation



Bangalore - India

2nd. generation



design: Lin Jiang, China











20 - 40% water consumption in sewered cities is due to the water toilet

(Gardner 1997)



# **Ecological engineering**

The development of human society with nature for the benefit of both.

(W.J. Mitsch and S.E. Jørgensen in **Ecological engineering**, 1989)



### Design

of ecological sanitation systems

System approach







#### Resources in wastewater

Annual discharge from one person

| <ul><li>Nitrogen (N)</li><li>4.5</li></ul> | kg |
|--------------------------------------------|----|
|--------------------------------------------|----|

- Phosphorus (P)
   0.6 kg
- Potassium (K)1.0 kg
- Organic matter (BOD) 35 kg





Loss of Soil Fertility (slow but dramatic, global scale)
Can be counteracted by returning treated biowaste

(Map from WWW.FAO.ORG)

www.ecosan.no



### The wastewater resource

The fertilizer value of the nutrients dicharged to the sewer systems in **Norway** 

# 30 million USD per year



#### The wastewater resource

The fertilizer value of the blackwater from 900 Mio people in rural **China** 

# 2.5 billion USD

per year

(UNESCO 2001)





### Design

of ecological sanitation systems

- System approach
- Decentralized systems
- Recycling and resource saving







# The toilet!





# Contribution from the toilet

- \* 90 % of N
- \* 80 % of P
- \* 80 % of K
- \* 40-75 % of org. matter
- \* Majority of the pathogens





An ordinary toilet uses 6 - 20 litres/flush



# Future toilet types (comercially available today)

Composting /dry sanitation

0 - 0.1 liter/visit

Urine diverting

0.1 - 4.0 liter/visit

Water saving (vacuum&gravity)
 0.5 - 1.5 liter/visit





### Composting toilet at roadside facility - Sweden



Elected the best roadside facility In Sweden 2002

# Norwegian University Secondary composting





# Dry sanitation - hygiene





International research show that dry sanitation may give an equal or higher reduction of pathogens and a high reduction in risk of exposure.

(Stenström 2001)











- Urine flushed with 1-2 dl
- Faeces flushed with 2-4 liters

(Jønsson et al. 1998) **WWW.ecosan.no** 



### Low flush toilets

Vacuum
0.5 - 1.5 liters/flush



Gravity
1 liter/flush









## Vacuum toilets

- Small diameter pipes
- Piping independent of inclination





# Vacuum toilets - energy use



4 KWh/person and year

























**Greywater treatment** 



# Total nitrogen concentrations in untreated greywater (mg/l)





# Total phosphorus concentrations in untreated greywater (mg/l)





# Compact systems

Rotating biological contactors







## Greywater treatment









# Greywater treatment at Klosterenga Oslo

#### **Effluent values:**

Fecal coliforms: 0

Total-N: 2,5 mg/l
Total-P: 0,02 mg/l

www.ecosan.no









## Preliminary Assessment of Investment Cost

| Conventional Centralized Sewage System | 3,000 Million MYR |
|----------------------------------------|-------------------|
| Ecological Sanitation                  | 1,000 Million MYR |



# **Investment cost** of centralized sewer systems



- Collection system 80%
- Treatment

#### In the US:

- 37% of all new developments are serviced by onsite or decentralised systems
- over 50% of onsite/cluster systems are in cities and their suburbs

(USEPA 2000)

20%





www.ecosan.no







## Greywater treatment - Hui Sing Garden





Preliminary results:

BOD < 2 mg/l

Total N 2.2 mg/l

Total P 1.9

Faecal coliforms 50/100ml



www.ecosan.no





# Ecological sanitation leads to



- Improved health by diverting blackwater from the water cycle
- Affordable solutions with low investment and maintenance costs
- Increased food security by better fertilizer availability



## Ecological sanitation leads to



- Bioenergy production by integrated solutions for wastewater and organic waste
- Economic development by generation of local business opportunities
- Stakeholder involvement and system acceptance



### Conclusion

Leapfrog the conventional centralized sewers

Go straight to modern sanitation based on ecological principles

