Plant growth and microbiological safety of plants irrigated with greywater

Lumka Salukazana, S. Jackson, N. Rodda, M. Smith, T. Gounden, N. Macleod and C. Buckley

Introduction

Domestic wastewater
 Toilet waste (black water)
 Non-toilet waste (greywater)

In low-income dense peri-urban and rural communities served by on-site sanitation

 Toilet waste contained and treated on-site
 Greywater not addressed

Greywater represents an environmental problem

- Unpleasant odours
- Health hazards
- Soil erosion
- Pollution of surface water by runoff
- Mosquito breeding
- Peri-urban, informal and rural settlements are associated with low income, low food security
- Greywater re-use simultaneously addresses environmental and social needs
 - Pilot trials by eThekwini successful and accepted by communities

 Semi field greywater irrigation trials conducted to investigate:

Effect of greywater on plant growth

Microbiological safety of produce

Experimental design

- Eight households were selected from nearby community based on
 - Number per household
 - Age
 - Gender
 - Washing application (bathing, laundry *etc*.)
- Three treatments
 - Tap water (negative control)
 - Nutrient solution (positive control)
 - Greywater (experimental treatment)
- Both leafy (above ground) and root (below ground) crops were selected
 - 25 replicates per treatment
 - Above ground spinach and green pepper
 - Below ground potatoes and madumbes

Plant growth monitoring

Weekly measurements taken of

- Stem height and diameter
- Number of leaves
- Leaf area
- Number of fruits

Fresh weights at harvest

Microbiological analysis

- Conducted on both surface and interior of plants at harvest for:
 - E. coli
 - Total coliforms
 - Staphylococcus spp.
 - Coliphage
 - Ascaris spp.

Nutrient solution

Greywater

Tap water

Nutrient Solution

Greywater

lap water

Stem heights

Spinach

Stem heights

Potatoes

Madumbes

Microbiological Results

Spinach

Pepper

Potatoes

Commercial crops

Spinach

Conclusions

 Greywater provided nutrients for both leafy and below-ground plants

 No significant difference in microbial quality of greywater irrigated crops relative to controls and commercial crops

 Greywater represents a potential resource for food production

Acknowledgements

This research was funded by

 eThekwini Municipality
 National Research Foundation
 University of KwaZulu-Natal